

Guidelines on Basic Safety Requirements in Laboratories dealing with Aerosols

Second Edition: October 2016

© FEA 2016 All Rights Reserved

FEA aisbl – Boulevard du Souverain 165 – 1160 Brussels – Belgium Tel: + 32 (0)2 679 62 80 - Fax: + 32 (0)2 679 62 83 - <u>info@aerosol.org</u> - <u>www.aerosol.org</u> V.A.T.: BE 0422.796.670

Disclaimer:

The information in these guidelines is given in good faith, but does not imply the acceptance of any legal liability or responsibility whatsoever by the FEA and the contributors for any inaccuracies and for the consequences of its use or misuse in any particular circumstances.

Foreword

Billions of aerosols are produced every year fulfilling the high safety standards put in place in production. The continuous success of aerosol products also results from the fact that relevant innovations and the high level of consumer satisfaction are achieved.

This revised FEA *Guide on Basic Safety Requirements in Laboratories dealing with Aerosols* targets all the laboratories where aerosols are handled, whether it will be in the early stages of product development or later-on in production quality laboratories.

When a high level of training for all parties involved and awareness about the hazards and requirements is achieved, the prerequisites for safe laboratory works are given. It is about coworkers' safety and therefore a mandatory paper for supervisors and laboratory workers.

Latest information about the changes in CLP or Directives about safety at work are incorporated as well as useful practical instructions are compiled.

It is my pleasure, as President of the European Aerosol Federation, to introduce the revised edition and to thank you, the experts from the European aerosol industry and National Associations who have compiled that excellent paper, for the fantastic work done.

This Guide is recommended by FEA as a practical contribution to high safety standards in daily laboratory operations.

This Guide, of course, does not supersede national enforcement of the legislation.

Rolf Bayersdörfer FEA President October 2016

Contents

1 PURPOSE OF THIS MANUAL	7
2 GLOSSARY OF TERMS	8
3 RELEVANT DIRECTIVES	11
3.1. AEROSOL DISPENSERS	11
3.2. SAFETY AT WORK	11
3.3. MACHINES AND ELECTRICAL EQUIPMENT	12
3.4. HAZARDOUS SUBSTANCES AND MIXTURES	13
4 DESIGN AND GOOD WORKING PRACTICES FOR THE LABORATORY	14
4.1. INTRODUCTION	14
4.2. RISK ASSESSMENTS OF TASKS / OPERATIONS AND PRACTICAL ADVICE	14
4.2.1 UNDERTAKING RISK ASSESSMENTS	14
4.2.2 PRACTICAL GUIDANCE / CONTROL METHODS FOR LABORATORIES, POST-RISK ASSE	SSMENT
	16
4.2.3 FLAMMABLE RISKS	16
4.2.4 INHALATION RISKS	17
4.3. PERSONNEL	17
4.4. LABORATORY DESIGN	18
4.5. Personal Protection	19
4.5.1 EYE PROTECTION	20
4.5.2 HAND PROTECTION	20
4.5.3 FOOTWARE	20
4.5.4 RESPIRATORY PROTECTION	21
4.6. VISITORS	21
4.7. SAFETY EQUIPMENT	21
4.7.1 PREVENTATIVE EQUIPMENT	21
4.7.2 Emergency Equipment	21
5 PROCESSING INGREDIENTS (FORMULATION)	23

5.1. RISK ASSESSMENT	23
5.2. PHYSICAL HAZARDS	24
5.2.1 PRACTICAL STEPS FOR THE LABORATORY	25
5.3. HEALTH AND ENVIRONMENTAL HAZARDS	25
5.3.1 PRACTICAL STEPS FOR THE LABORATORY	26
	20
6 PROPELLANTS	28
61 STODACE AND HANDLING	28
6 1 1 GENERAL	20
6.1.2 PRODELLANT PACKAGES	20
6.1.3 PROPELLANT HANDLING	20 30
6.2. PROPELLANT SYSTEMS	31
6.2.1 Non FLAMMARI E LIQUEFIED PROPELLANTS	31
6.2.2 FLAMMABLE PROPELLANTS	32
6.2.3 COMPRESSED AND DISSOLVED GASES	34
6.3. INCREASE IN VOLUME FOR EVAPORATING PROPELLANTS	34
7 AFROSOL FILLING	35
7.1. STRENGTH OF CONTAINER	35
7.2. CONTROL OF FILLING QUANTITIES	36
7.3. CONCENTRATE FILLING & CONTAINER SEALING	36
7.4. CAN PURGING	36
7.5. GASSING	37
7.5.1 GENERAL	37
7.5.2 Pressure Filling	38
7.5.3 Transfer Filling	40
7.5.4 COMPRESSED AND SOLUBLE GAS PROPELLANTS	40
7.5.5 COLD FILLING	41
7.5.6 BURETTE FILLING	42
7.5.7 FILLING OF GLASS/PLASTIC AEROSOL CONTAINERS	42
7.6. OVERFILLED CONTAINERS	43
7.7. Container Testing	43
7.8. SAMPLE STORAGE & LABELLING	44
8 LABORATORY STORAGE OF AEROSOL PRODUCTS	45
	47
3.1. GENERAL GUIDELINES FOR ALL STORED AEROSOLS	45
8.1.1 NUMBERS OF SAMPLES RETAINED IN THE LABORATORY	45
8.1.2 LABELLING	45
8.1.3 WATER BATH TESTING	46
8.1.4 PACKING	46
8.2. LONG TERM AEROSOL TESTING	46
8.2.1 AMBIENT LEMPERATURE STORAGE	47
8.2.2 ELEVATED 1 EMPERATURE STORAGE	47
8.3. DISPOSAL OF SAMPLES	47

9.1. GENERAL	48
9.2. SPECIFIC TESTS	48
9.2.1 Spray Tests	48
9.2.2 PACK TESTS (VACUUM, PRESSURE AND CRIMP VALUES)	49
9.2.3 FLAMMABILITY TESTS	49
9.2.4 Specialised Tests	50
9.2.5 PRODUCT ANALYSIS	50
10 DISPOSAL	51
10.1. General	51
10.2. PERSONNEL AND HAZARDS	52
10.3. DISPOSAL OF FILLED CONTAINERS	52
10.4. DEFECTIVE CONTAINERS	53
10.5. Depressurisation	53
10.6. DISPOSAL OF CONTAINER CONTENTS	54
10.7. Emptied Containers	54
10.8. DISPOSAL OF RAW MATERIALS	55
11 APPENDICES	56
11.1. APPENDIX 1 – CLPHAZARD CLASSES	56
11.1.1 PHYSICAL HAZARDS	56
11.1.2 Health Hazards	58
11.1.3 Environmental Hazards	61
11.2. APPENDIX 2 – SOME FEATURES OF GASSING ROOM DESIGN	62
11.3. APPENDIX 3 – CONTROL OF LASER EQUIPMENT	64
11.4. APPENDIX 4 – VENTILATION AIR FLOW DESIGN	65
11.5. APPENDIX 5 – HANDLING OF DEFECTIVE CONTAINERS	66
11.5.1 Overfilled Containers	66
11.5.2 Overpressurised Containers	67
11.5.3 Leakers	67
11.6. APPENDIX 6 – PUNCTURING OF AEROSOL CONTAINERS	68
11.6.1 GENERAL	68
11.6.2 Method	68
11.7. APPENDIX 7 – SAFE DISPOSAL OF RESIDUAL CONCENTRATE	70

